Let $$\alpha \in\mathbb{R}$$ and let $$\alpha,\beta$$ be the roots of the equation $${x^2} + {60^{{1 \over 4}}}x + a = 0$$. If $${\alpha ^4} + {\beta ^4} = - 30$$, then the product of all possible values of $$a$$ is ____________.
Let $$\lambda \in \mathbb{R}$$ and let the equation E be $$|x{|^2} - 2|x| + |\lambda - 3| = 0$$. Then the largest element in the set S = {$$x+\lambda:x$$ is an integer solution of E} is ______
Let $$\alpha, \beta(\alpha>\beta)$$ be the roots of the quadratic equation $$x^{2}-x-4=0 .$$ If $$P_{n}=\alpha^{n}-\beta^{n}$$, $$n \in \mathrm{N}$$, then $$\frac{P_{15} P_{16}-P_{14} P_{16}-P_{15}^{2}+P_{14} P_{15}}{P_{13} P_{14}}$$ is equal to __________.
The sum of all real values of $$x$$ for which $$\frac{3 x^{2}-9 x+17}{x^{2}+3 x+10}=\frac{5 x^{2}-7 x+19}{3 x^{2}+5 x+12}$$ is equal to __________.