Let the equations of two adjacent sides of a parallelogram $$\mathrm{ABCD}$$ be $$2 x-3 y=-23$$ and $$5 x+4 y=23$$. If the equation of its one diagonal $$\mathrm{AC}$$ is $$3 x+7 y=23$$ and the distance of A from the other diagonal is $$\mathrm{d}$$, then $$50 \mathrm{~d}^{2}$$ is equal to ____________.
The equations of the sides AB, BC and CA of a triangle ABC are : $$2x+y=0,x+py=21a,(a\pm0)$$ and $$x-y=3$$ respectively. Let P(2, a) be the centroid of $$\Delta$$ABC. Then (BC)$$^2$$ is equal to ___________.
The equations of the sides $$\mathrm{AB}, \mathrm{BC}$$ and $$\mathrm{CA}$$ of a triangle $$\mathrm{ABC}$$ are $$2 x+y=0, x+\mathrm{p} y=15 \mathrm{a}$$ and $$x-y=3$$ respectively. If its orthocentre is $$(2, a),-\frac{1}{2}<\mathrm{a}<2$$, then $$\mathrm{p}$$ is equal to ______________.
A ray of light passing through the point P(2, 3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ratio 2 : 1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be ($$\alpha$$, $$\beta$$). Then, the value of 7$$\alpha$$ + 3$$\beta$$ is equal to ____________.