1
JEE Main 2021 (Online) 17th March Evening Shift
Numerical
+4
-1
Change Language
Let tan$$\alpha$$, tan$$\beta$$ and tan$$\gamma$$; $$\alpha$$, $$\beta$$, $$\gamma$$ $$\ne$$ $${{(2n - 1)\pi } \over 2}$$, n$$\in$$N be the slopes of three line segments OA, OB and OC, respectively, where O is origin. If circumcentre of $$\Delta$$ABC coincides with origin and its orthocentre lies on y-axis, then the value of $${\left( {{{\cos 3\alpha + \cos 3\beta + \cos 3\gamma } \over {\cos \alpha \cos \beta \cos \gamma }}} \right)^2}$$ is equal to ____________.
Your input ____
2
JEE Main 2021 (Online) 17th March Morning Shift
Numerical
+4
-1
Change Language
The maximum value of z in the following equation z = 6xy + y2, where 3x + 4y $$ \le $$ 100 and 4x + 3y $$ \le $$ 75 for x $$ \ge $$ 0 and y $$ \ge $$ 0 is __________.
Your input ____
3
JEE Main 2020 (Online) 5th September Morning Slot
Numerical
+4
-0
Change Language
If the line, 2x - y + 3 = 0 is at a distance
$${1 \over {\sqrt 5 }}$$ and $${2 \over {\sqrt 5 }}$$ from the lines 4x - 2y + $$\alpha $$ = 0
and 6x - 3y + $$\beta $$ = 0, respectively, then the sum of all possible values of $$\alpha $$ and $$\beta $$ is :
Your input ____
4
JEE Main 2020 (Online) 7th January Morning Slot
Numerical
+4
-0
Change Language
Let A(1, 0), B(6, 2) and C $$\left( {{3 \over 2},6} \right)$$ be the vertices of a triangle ABC. If P is a Point inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then the length of the line segment PQ, where Q is the point $$\left( { - {7 \over 6}, - {1 \over 3}} \right)$$, is ________.
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12