1
JEE Main 2024 (Online) 1st February Evening Shift
Numerical
+4
-1
Change Language
The lines $\mathrm{L}_1, \mathrm{~L}_2, \ldots, \mathrm{L}_{20}$ are distinct. For $\mathrm{n}=1,2,3, \ldots, 10$ all the lines $\mathrm{L}_{2 \mathrm{n}-1}$ are parallel to each other and all the lines $L_{2 n}$ pass through a given point $P$. The maximum number of points of intersection of pairs of lines from the set $\left\{\mathrm{L}_1, \mathrm{~L}_2, \ldots, \mathrm{L}_{20}\right\}$ is equal to ___________.
Your input ____
2
JEE Main 2024 (Online) 31st January Evening Shift
Numerical
+4
-1
Change Language

Let $$A(-2,-1), B(1,0), C(\alpha, \beta)$$ and $$D(\gamma, \delta)$$ be the vertices of a parallelogram $$A B C D$$. If the point $$C$$ lies on $$2 x-y=5$$ and the point $$D$$ lies on $$3 x-2 y=6$$, then the value of $$|\alpha+\beta+\gamma+\delta|$$ is equal to ___________.

Your input ____
3
JEE Main 2024 (Online) 27th January Evening Shift
Numerical
+4
-1
Change Language

If the sum of squares of all real values of $$\alpha$$, for which the lines $$2 x-y+3=0,6 x+3 y+1=0$$ and $$\alpha x+2 y-2=0$$ do not form a triangle is $$p$$, then the greatest integer less than or equal to $$p$$ is _________.

Your input ____
4
JEE Main 2023 (Online) 11th April Evening Shift
Numerical
+4
-1
Out of Syllabus
Change Language

If the line $$l_{1}: 3 y-2 x=3$$ is the angular bisector of the lines $$l_{2}: x-y+1=0$$ and $$l_{3}: \alpha x+\beta y+17=0$$, then $$\alpha^{2}+\beta^{2}-\alpha-\beta$$ is equal to _________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12