Let $$[t]$$ be the greatest integer less than or equal to $$t$$. Let $$A$$ be the set of all prime factors of 2310 and $$f: A \rightarrow \mathbb{Z}$$ be the function $$f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$$. The number of one-to-one functions from $$A$$ to the range of $$f$$ is
If all the words with or without meaning made using all the letters of the word "NAGPUR" are arranged as in a dictionary, then the word at $$315^{\text {th }}$$ position in this arrangement is :
Let $$0 \leq r \leq n$$. If $${ }^{n+1} C_{r+1}:{ }^n C_r:{ }^{n-1} C_{r-1}=55: 35: 21$$, then $$2 n+5 r$$ is equal to :
The number of triangles whose vertices are at the vertices of a regular octagon but none of whose sides is a side of the octagon is