In a group of 3 girls and 4 boys, there are two boys $B_1$ and $B_2$. The number of ways, in which these girls and boys can stand in a queue such that all the girls stand together, all the boys stand together, but $B_1$ and $B_2$ are not adjacent to each other, is :
From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter is ' M ', is :
The number of ways five alphabets can be chosen from the alphabets of the word MATHEMATICS, where the chosen alphabets are not necessarily distinct, is equal to:
Let $$[t]$$ be the greatest integer less than or equal to $$t$$. Let $$A$$ be the set of all prime factors of 2310 and $$f: A \rightarrow \mathbb{Z}$$ be the function $$f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$$. The number of one-to-one functions from $$A$$ to the range of $$f$$ is