Let ${ }^n C_{r-1}=28,{ }^n C_r=56$ and ${ }^n C_{r+1}=70$. Let $A(4 \operatorname{cost}, 4 \sin t), B(2 \sin t,-2 \cos t)$ and $C\left(3 r-n, r^2-n-1\right)$ be the vertices of a triangle $A B C$, where $t$ is a parameter. If $(3 x-1)^2+(3 y)^2$ $=\alpha$, is the locus of the centroid of triangle ABC , then $\alpha$ equals
The number of different 5 digit numbers greater than 50000 that can be formed using the digits 0 , $1,2,3,4,5,6,7$, such that the sum of their first and last digits should not be more than 8 , is
Group A consists of 7 boys and 3 girls, while group B consists of 6 boys and 5 girls. The number of ways, 4 boys and 4 girls can be invited for a picnic if 5 of them must be from group $A$ and the remaining 3 from group $B$, is equal to :
The number of words, which can be formed using all the letters of the word "DAUGHTER", so that all the vowels never come together, is :