Let A = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : |$\alpha$ - 1| $\leq 4$ and |$\beta$ - 5| $\leq 6$ }
and B = { ($\alpha, \beta$) $\in \mathbb{R} \times \mathbb{R}$ : 16($\alpha$ - $2)^2 $+ 9($\beta$ - $6)^2$ $\leq 144$ }.
Then
Let $\mathrm{A}=\{-3,-2,-1,0,1,2,3\}$ and R be a relation on A defined by $x \mathrm{R} y$ if and only if $2 x-y \in\{0,1\}$. Let $l$ be the number of elements in $R$. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l+\mathrm{m}+\mathrm{n}$ is equal to:
Consider the sets $A=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^2+y^2=25\right\}, B=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^2+9 y^2=144\right\}$, $C=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x^2+y^2 \leq 4\right\}$ and $D=A \cap B$. The total number of one-one functions from the set $D$ to the set $C$ is:
Let $A=\{-2,-1,0,1,2,3\}$. Let R be a relation on $A$ defined by $x \mathrm{R} y$ if and only if $y=\max \{x, 1\}$. Let $l$ be the number of elements in R . Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l+m+n$ is equal to