Let $m$ and $n$ be the number of points at which the function $f(x)=\max \left\{x, x^3, x^5, \ldots x^{21}\right\}, x \in \mathbb{R}$, is not differentiable and not continuous, respectively. Then $m+n$ is equal to _________.
Let $A=\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$. If for some $\theta \in(0, \pi), A^2=A^T$, then the sum of the diagonal elements of the matrix $(\mathrm{A}+\mathrm{I})^3+(\mathrm{A}-\mathrm{I})^3-6 \mathrm{~A}$ is equal to _________ .
If the area of the region $\{(x, y):|x-5| \leq y \leq 4 \sqrt{x}\}$ is $A$, then $3 A$ is equal to _________.
Let $\mathrm{A}=\{z \in \mathrm{C}:|z-2-i|=3\}, \mathrm{B}=\{z \in \mathrm{C}: \operatorname{Re}(z-i z)=2\}$ and $\mathrm{S}=\mathrm{A} \cap \mathrm{B}$. Then $\sum_{z \in S}|z|^2$ is equal to _________.