1
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Consider two vectors $\vec{u}=3 \hat{i}-\hat{j}$ and $\vec{v}=2 \hat{i}+\hat{j}-\lambda \hat{k}, \lambda>0$. The angle between them is given by $\cos ^{-1}\left(\frac{\sqrt{5}}{2 \sqrt{7}}\right)$. Let $\vec{v}=\vec{v}_1+\overrightarrow{v_2}$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\overrightarrow{v_2}$ is perpendicular to $\vec{u}$. Then the value $\left|\overrightarrow{v_1}\right|^2+\left|\overrightarrow{v_2}\right|^2$ is equal to

A
$\frac{23}{2}$
B
$\frac{25}{2}$
C
10
D
14
2
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

For an integer $n \geq 2$, if the arithmetic mean of all coefficients in the binomial expansion of $(x+y)^{2 n-3}$ is 16 , then the distance of the point $\mathrm{P}\left(2 n-1, n^2-4 n\right)$ from the line $x+y=8$ is

A
$\sqrt{2}$
B
$2 \sqrt{2}$
C
$5 \sqrt{2}$
D
$3 \sqrt{2}$
3
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2 \sqrt{17}$ from the foot of perpendicular drawn from the point $(1,2,3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{O A} \cdot \overrightarrow{O B}$ is equal to

A
49
B
21
C
47
D
62
4
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $f, g:(1, \infty) \rightarrow \mathbb{R}$ be defined as $f(x)=\frac{2 x+3}{5 x+2}$ and $g(x)=\frac{2-3 x}{1-x}$. If the range of the function fog: $[2,4] \rightarrow \mathbb{R}$ is $[\alpha, \beta]$, then $\frac{1}{\beta-\alpha}$ is equal to

A
56
B
2
C
29
D
68
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12