Let $f, g:(1, \infty) \rightarrow \mathbb{R}$ be defined as $f(x)=\frac{2 x+3}{5 x+2}$ and $g(x)=\frac{2-3 x}{1-x}$. If the range of the function fog: $[2,4] \rightarrow \mathbb{R}$ is $[\alpha, \beta]$, then $\frac{1}{\beta-\alpha}$ is equal to
If $\lim _\limits{x \rightarrow 1^{+}} \frac{(x-1)(6+\lambda \cos (x-1))+\mu \sin (1-x)}{(x-1)^3}=-1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda+\mu$ is equal to
Let the three sides of a triangle are on the lines $4 x-7 y+10=0, x+y=5$ and $7 x+4 y=15$. Then the distance of its orthocentre from the orthocentre of the tringle formed by the lines $x=0, y=0$ and $x+y=1$ is
In the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n, n \in \mathrm{~N}$, if the ratio of $15^{\text {th }}$ term from the beginning to the $15^{\text {th }}$ term from the end is $\frac{1}{6}$, then the value of ${ }^n \mathrm{C}_3$ is