Let $A=\{1,6,11,16, \ldots\}$ and $B=\{9,16,23,30, \ldots\}$ be the sets consisting of the first 2025 terms of two arithmetic progressions. Then $n(A \cup B)$ is
The length of the latus-rectum of the ellipse, whose foci are $(2,5)$ and $(2,-3)$ and eccentricity is $\frac{4}{5}$, is
Consider the equation $x^2+4 x-n=0$, where $n \in[20,100]$ is a natural number. Then the number of all distinct values of $n$, for which the given equation has integral roots, is equal to
Consider the sets $A=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^2+y^2=25\right\}, B=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^2+9 y^2=144\right\}$, $C=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x^2+y^2 \leq 4\right\}$ and $D=A \cap B$. The total number of one-one functions from the set $D$ to the set $C$ is: