Let $C$ be the circle $x^2+(y-1)^2=2, E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on x -axis and y -axis respectively. Let the straight line $x+y=3$ touch the curves $C, E_1$ and $E_2$ at $P\left(x_1, y_1\right), Q\left(x_2, y_2\right)$ and $R\left(x_3, y_3\right)$ respectively. Given that $P$ is the mid point of the line segment $Q R$ and $P Q=\frac{2 \sqrt{2}}{3}$, the value of $9\left(x_1 y_1+x_2 y_2+x_3 y_3\right)$ is equal to _______.
Let $m$ and $n$ be the number of points at which the function $f(x)=\max \left\{x, x^3, x^5, \ldots x^{21}\right\}, x \in \mathbb{R}$, is not differentiable and not continuous, respectively. Then $m+n$ is equal to _________.
Let $A=\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$. If for some $\theta \in(0, \pi), A^2=A^T$, then the sum of the diagonal elements of the matrix $(\mathrm{A}+\mathrm{I})^3+(\mathrm{A}-\mathrm{I})^3-6 \mathrm{~A}$ is equal to _________ .
If the area of the region $\{(x, y):|x-5| \leq y \leq 4 \sqrt{x}\}$ is $A$, then $3 A$ is equal to _________.