1
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For an integer $n \geq 2$, if the arithmetic mean of all coefficients in the binomial expansion of $(x+y)^{2 n-3}$ is 16 , then the distance of the point $\mathrm{P}\left(2 n-1, n^2-4 n\right)$ from the line $x+y=8$ is

A
$\sqrt{2}$
B
$2 \sqrt{2}$
C
$5 \sqrt{2}$
D
$3 \sqrt{2}$
2
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2 \sqrt{17}$ from the foot of perpendicular drawn from the point $(1,2,3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{O A} \cdot \overrightarrow{O B}$ is equal to

A
49
B
21
C
47
D
62
3
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f, g:(1, \infty) \rightarrow \mathbb{R}$ be defined as $f(x)=\frac{2 x+3}{5 x+2}$ and $g(x)=\frac{2-3 x}{1-x}$. If the range of the function fog: $[2,4] \rightarrow \mathbb{R}$ is $[\alpha, \beta]$, then $\frac{1}{\beta-\alpha}$ is equal to

A
56
B
2
C
29
D
68
4
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\lim _\limits{x \rightarrow 1^{+}} \frac{(x-1)(6+\lambda \cos (x-1))+\mu \sin (1-x)}{(x-1)^3}=-1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda+\mu$ is equal to

A
20
B
19
C
18
D
17
JEE Main Papers
2023
2021
EXAM MAP