1
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Let $y=y(x)$ be the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \sec ^2 x=2 \sec ^2 x+3 \tan x \cdot \sec ^2 x$ such that $y(0)=\frac{5}{4}$. Then $12\left(y\left(\frac{\pi}{4}\right)-\mathrm{e}^{-2}\right)$ is equal to_____________________
Your input ____
2
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Let $\mathrm{A}(4,-2), \mathrm{B}(1,1)$ and $\mathrm{C}(9,-3)$ be the vertices of a triangle ABC . Then the maximum area of the parallelogram AFDE, formed with vertices D, E and F on the sides BC, CA and $A B$ of the triangle $A B C$ respectively, is___________
Your input ____
3
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
The moment of inertia of a circular ring of mass M and diameter r about a tangential axis lying in the plane of the ring is :
A
$\frac{3}{8} \mathrm{Mr}^2$
B
$2 \mathrm{Mr}^2$
C
$\frac{1}{2} \mathrm{Mr}^2$
D
$\frac{3}{2} \mathrm{Mr}^2$
4
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1

In a moving coil galvanometer, two moving coils $\mathrm{M}_1$ and $\mathrm{M}_2$ have the following particulars :

$$ \begin{aligned} & \mathrm{R}_1=5 \Omega, \mathrm{~N}_1=15, \mathrm{~A}_1=3.6 \times 10^{-3} \mathrm{~m}^2, \mathrm{~B}_1=0.25 \mathrm{~T} \\ & \mathrm{R}_2=7 \Omega, \mathrm{~N}_2=21, \mathrm{~A}_2=1.8 \times 10^{-3} \mathrm{~m}^2, \mathrm{~B}_2=0.50 \mathrm{~T} \end{aligned} $$

Assuming that torsional constant of the springs are same for both coils, what will be the ratio of voltage sensitivity of $M_1$ and $M_2$ ?

A
$1: 1$
B
$1: 3$
C
$1: 2$
D
$1: 4$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12