1
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
Let $y=y(x)$ be the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \sec ^2 x=2 \sec ^2 x+3 \tan x \cdot \sec ^2 x$ such that $y(0)=\frac{5}{4}$. Then $12\left(y\left(\frac{\pi}{4}\right)-\mathrm{e}^{-2}\right)$ is equal to_____________________
Your input ____
2
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
Let $\mathrm{A}(4,-2), \mathrm{B}(1,1)$ and $\mathrm{C}(9,-3)$ be the vertices of a triangle ABC . Then the maximum area of the parallelogram AFDE, formed with vertices D, E and F on the sides BC, CA and $A B$ of the triangle $A B C$ respectively, is___________
Your input ____
3
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The moment of inertia of a circular ring of mass M and diameter r about a tangential axis lying in the plane of the ring is :
A
$\frac{3}{8} \mathrm{Mr}^2$
B
$2 \mathrm{Mr}^2$
C
$\frac{1}{2} \mathrm{Mr}^2$
D
$\frac{3}{2} \mathrm{Mr}^2$
4
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

In a moving coil galvanometer, two moving coils $\mathrm{M}_1$ and $\mathrm{M}_2$ have the following particulars :

$$ \begin{aligned} & \mathrm{R}_1=5 \Omega, \mathrm{~N}_1=15, \mathrm{~A}_1=3.6 \times 10^{-3} \mathrm{~m}^2, \mathrm{~B}_1=0.25 \mathrm{~T} \\ & \mathrm{R}_2=7 \Omega, \mathrm{~N}_2=21, \mathrm{~A}_2=1.8 \times 10^{-3} \mathrm{~m}^2, \mathrm{~B}_2=0.50 \mathrm{~T} \end{aligned} $$

Assuming that torsional constant of the springs are same for both coils, what will be the ratio of voltage sensitivity of $M_1$ and $M_2$ ?

A
$1: 1$
B
$1: 3$
C
$1: 2$
D
$1: 4$
JEE Main Papers
2023
2021
EXAM MAP