1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let $A=\{1,2,3, \ldots ., 100\}$ and $R$ be a relation on $A$ such that $R=\{(a, b): a=2 b+1\}$. Let $\left(a_1\right.$, $\left.a_2\right),\left(a_2, a_3\right),\left(a_3, a_4\right), \ldots .,\left(a_k, a_{k+1}\right)$ be a sequence of $k$ elements of $R$ such that the second entry of an ordered pair is equal to the first entry of the next ordered pair. Then the largest integer k , for which such a sequence exists, is equal to :
A
6
B
8
C
7
D
5
2
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
If the domain of the function $f(x)=\frac{1}{\sqrt{10+3 x-x^2}}+\frac{1}{\sqrt{x+|x|}}$ is $(a, b)$, then $(1+a)^2+b^2$ is equal to :
A
29
B
30
C
25
D
26
3
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let the area of the triangle formed by a straight line $\mathrm{L}: x+\mathrm{b} y+\mathrm{c}=0$ with co-ordinate axes be 48 square units. If the perpendicular drawn from the origin to the line L makes an angle of $45^{\circ}$ with the positive $x$-axis, then the value of $\mathrm{b}^2+\mathrm{c}^2$ is :
A
90
B
83
C
93
D
97
4
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
The line $\mathrm{L}_1$ is parallel to the vector $\overrightarrow{\mathrm{a}}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ and passes through the point $(7,6,2)$ and the line $\mathrm{L}_2$ is parallel to the vector $\overrightarrow{\mathrm{b}}=2 \hat{i}+\hat{j}+3 \hat{k}$ and passes through the point $(5,3,4)$. The shortest distance between the lines $L_1$ and $L_2$ is :
A
$\frac{23}{\sqrt{38}}$
B
$\frac{21}{\sqrt{38}}$
C
$\frac{23}{\sqrt{57}}$
D
$\frac{21}{\sqrt{57}}$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12