1
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language

If the set of all $\mathrm{a} \in \mathbf{R}-\{1\}$, for which the roots of the equation $(1-\mathrm{a}) x^2+2(\mathrm{a}-3) x+9=0$ are positive is $(-\infty,-\alpha] \cup[\beta, \gamma)$, then $2 \alpha+\beta+\gamma$ is equal to $\qquad$ .

Your input ____
2
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
If the sum of the first 10 terms of the series $\frac{4 \cdot 1}{1+4 \cdot 1^4}+\frac{4 \cdot 2}{1+4 \cdot 2^4}+\frac{4 \cdot 3}{1+4 \cdot 3^4}+\ldots .$. is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\mathrm{m}+\mathrm{n}$ is equal to _______________
Your input ____
3
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
Let $y=y(x)$ be the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \sec ^2 x=2 \sec ^2 x+3 \tan x \cdot \sec ^2 x$ such that $y(0)=\frac{5}{4}$. Then $12\left(y\left(\frac{\pi}{4}\right)-\mathrm{e}^{-2}\right)$ is equal to_____________________
Your input ____
4
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
Let $\mathrm{A}(4,-2), \mathrm{B}(1,1)$ and $\mathrm{C}(9,-3)$ be the vertices of a triangle ABC . Then the maximum area of the parallelogram AFDE, formed with vertices D, E and F on the sides BC, CA and $A B$ of the triangle $A B C$ respectively, is___________
Your input ____
JEE Main Papers
2023
2021
EXAM MAP