1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
$4 \int_0^1\left(\frac{1}{\sqrt{3+x^2}+\sqrt{1+x^2}}\right) d x-3 \log _e(\sqrt{3})$ is equal to :
A
$2-\sqrt{2}-\log _{\mathrm{e}}(1+\sqrt{2})$
B
$2+\sqrt{2}+\log _{\mathrm{e}}(1+\sqrt{2})$
C
$2+\sqrt{2}-\log _{\mathrm{e}}(1+\sqrt{2})$
D
$2-\sqrt{2}+\log _e(1+\sqrt{2})$
2
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let $\overrightarrow{\mathrm{a}}=2 \hat{i}-3 \hat{j}+\hat{k}, \quad \overrightarrow{\mathrm{~b}}=3 \hat{i}+2 \hat{j}+5 \hat{k}$ and a vector $\overrightarrow{\mathrm{c}}$ be such that $(\vec{a}-\vec{c}) \times \vec{b}=-18 \hat{i}-3 \hat{j}+12 \hat{k}$ and $\vec{a} \cdot \vec{c}=3$. If $\vec{b} \times \vec{c}=\vec{d}$, then $|\vec{a} \cdot \vec{d}|$ is equal to :
A
15
B
18
C
12
D
9
3
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1

$$ \text { Given three indentical bags each containing } 10 \text { balls, whose colours are as follows : } $$

$$ \begin{array}{lccc} & \text { Red } & \text { Blue } & \text { Green } \\ \text { Bag I } & 3 & 2 & 5 \\ \text { Bag II } & 4 & 3 & 3 \\ \text { Bag III } & 5 & 1 & 4 \end{array} $$

A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from bag I is p and if the ball is Green, the probability that it is from bag III is $q$, then the value of $\left(\frac{1}{p}+\frac{1}{q}\right)$ is:
A
6
B
9
C
7
D
8
4
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1

$$ \text { If } y=\cos \left(\frac{\pi}{3}+\cos ^{-1} \frac{x}{2}\right) \text {, then }(x-y)^2+3 y^2 \text { is equal to } $$

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12