1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $A$ be a $3 \times 3$ real matrix such that $A^2(A-2 I)-4(A-I)=O$, where $I$ and $O$ are the identity and null matrices, respectively. If $A^5=\alpha A^2+\beta A+\gamma I$, where $\alpha, \beta$, and $\gamma$ are real constants, then $\alpha+\beta+\gamma$ is equal to :
A
76
B
12
C
4
D
20
2
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$$If\,\mathop {\lim }\limits_{x \to 0} {{\cos (2x) + a\cos (4x) - b} \over {{x^4}}}is\,finite,\,then\,(a + b)\,is\,equal\,to:$$
A
0
B
$\frac{3}{4}$
C
-1
D
$\frac{1}{2}$
3
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the image of the point $\mathrm{P}(1,0,3)$ in the line joining the points $\mathrm{A}(4,7,1)$ and $\mathrm{B}(3,5,3)$ is $Q(\alpha, \beta, \gamma)$, then $\alpha+\beta+\gamma$ is equal to :
A
$\frac{46}{3}$
B
18
C
13
D
$\frac{47}{3}$
4
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\theta \epsilon\left[-\frac{7 \pi}{6}, \frac{4 \pi}{3}\right]$, then the number of solutions of $\sqrt{3} \operatorname{cosec}^2 \theta-2(\sqrt{3}-1) \operatorname{cosec} \theta-4=0$, is equal to :
A
7
B
10
C
6
D
8
JEE Main Papers
2023
2021
EXAM MAP