1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$ \text { Given three indentical bags each containing } 10 \text { balls, whose colours are as follows : } $$

$$ \begin{array}{lccc} & \text { Red } & \text { Blue } & \text { Green } \\ \text { Bag I } & 3 & 2 & 5 \\ \text { Bag II } & 4 & 3 & 3 \\ \text { Bag III } & 5 & 1 & 4 \end{array} $$

A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from bag I is p and if the ball is Green, the probability that it is from bag III is $q$, then the value of $\left(\frac{1}{p}+\frac{1}{q}\right)$ is:
A
6
B
9
C
7
D
8
2
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language

$$ \text { If } y=\cos \left(\frac{\pi}{3}+\cos ^{-1} \frac{x}{2}\right) \text {, then }(x-y)^2+3 y^2 \text { is equal to } $$

Your input ____
3
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language

If the set of all $\mathrm{a} \in \mathbf{R}-\{1\}$, for which the roots of the equation $(1-\mathrm{a}) x^2+2(\mathrm{a}-3) x+9=0$ are positive is $(-\infty,-\alpha] \cup[\beta, \gamma)$, then $2 \alpha+\beta+\gamma$ is equal to $\qquad$ .

Your input ____
4
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
If the sum of the first 10 terms of the series $\frac{4 \cdot 1}{1+4 \cdot 1^4}+\frac{4 \cdot 2}{1+4 \cdot 2^4}+\frac{4 \cdot 3}{1+4 \cdot 3^4}+\ldots .$. is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\mathrm{m}+\mathrm{n}$ is equal to _______________
Your input ____
JEE Main Papers
2023
2021
EXAM MAP