1
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
If the sum of the first 10 terms of the series $\frac{4 \cdot 1}{1+4 \cdot 1^4}+\frac{4 \cdot 2}{1+4 \cdot 2^4}+\frac{4 \cdot 3}{1+4 \cdot 3^4}+\ldots .$. is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\mathrm{m}+\mathrm{n}$ is equal to _______________
Your input ____
2
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
Let $y=y(x)$ be the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \sec ^2 x=2 \sec ^2 x+3 \tan x \cdot \sec ^2 x$ such that $y(0)=\frac{5}{4}$. Then $12\left(y\left(\frac{\pi}{4}\right)-\mathrm{e}^{-2}\right)$ is equal to_____________________
Your input ____
3
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
Let $\mathrm{A}(4,-2), \mathrm{B}(1,1)$ and $\mathrm{C}(9,-3)$ be the vertices of a triangle ABC . Then the maximum area of the parallelogram AFDE, formed with vertices D, E and F on the sides BC, CA and $A B$ of the triangle $A B C$ respectively, is___________
Your input ____
4
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The moment of inertia of a circular ring of mass M and diameter r about a tangential axis lying in the plane of the ring is :
A
$\frac{3}{8} \mathrm{Mr}^2$
B
$2 \mathrm{Mr}^2$
C
$\frac{1}{2} \mathrm{Mr}^2$
D
$\frac{3}{2} \mathrm{Mr}^2$
JEE Main Papers
2023
2021
EXAM MAP