1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $(a, b)$ be the point of intersection of the curve $x^2=2 y$ and the straight line $y-2 x-6=0$ in the second quadrant. Then the integral $\mathrm{I}=\int_{\mathrm{a}}^{\mathrm{b}} \frac{9 x^2}{1+5^x} \mathrm{~d} x$ is equal to :
A
27
B
18
C
24
D
21
2
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the length of the minor axis of an ellipse is equal to one fourth of the distance between the foci, then the eccentricity of the ellipse is :
A
$\frac{3}{\sqrt{19}}$
B
$\frac{\sqrt{3}}{16}$
C
$\frac{4}{\sqrt{17}}$
D
$\frac{\sqrt{5}}{7}$
3
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
$$If\,\sum\limits_{r = 0}^{10} {({{{{10}^{r + 1}} - 1} \over {{{10}^r}}}).{}^{11}{C_{r + 1}} = {{{}_\alpha 11 - {{11}^{11}}} \over {{{10}^{10}}}},\,then\,\,\alpha \,\,is\,\,equal\,\,to:} $$
A
11
B
20
C
24
D
15
4
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$4 \int_0^1\left(\frac{1}{\sqrt{3+x^2}+\sqrt{1+x^2}}\right) d x-3 \log _e(\sqrt{3})$ is equal to :
A
$2-\sqrt{2}-\log _{\mathrm{e}}(1+\sqrt{2})$
B
$2+\sqrt{2}+\log _{\mathrm{e}}(1+\sqrt{2})$
C
$2+\sqrt{2}-\log _{\mathrm{e}}(1+\sqrt{2})$
D
$2-\sqrt{2}+\log _e(1+\sqrt{2})$
JEE Main Papers
2023
2021
EXAM MAP