The bond dissociation enthalpy of $\mathrm{X}_2 \Delta \mathrm{H}_{\text {bond }}^{\circ}$ calculated from the given data is ___________ $\mathrm{kJ} \mathrm{mol}^{-1}$. (Nearest integer)
$$\begin{aligned} & \mathrm{M}^{+} \mathrm{X}^{-}(\mathrm{s}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{X}^{-}(\mathrm{g}) \Delta \mathrm{H}_{\text {lattice }}^{\circ}=800 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \mathrm{M}(\mathrm{~s}) \rightarrow \mathrm{M}(\mathrm{~g}) \Delta \mathrm{H}_{\text {sub }}^{\circ}=100 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$$
$$\mathrm{M}(\mathrm{~g}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{e}^{-}(\mathrm{g}) \Delta \mathrm{H}_{\mathrm{i}}^{\circ}=500 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$\mathrm{X}(\mathrm{~g})+\mathrm{e}^{-}(\mathrm{g}) \rightarrow \mathrm{X}^{-}(\mathrm{g}) \Delta \mathrm{H}_{\mathrm{eg}}^{\circ}=-300 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$\mathrm{M}(\mathrm{~s})+\frac{1}{2} \mathrm{X}_2(\mathrm{~g}) \rightarrow \mathrm{M}^{+} \mathrm{X}^{-}(\mathrm{s}) \Delta \mathrm{H}_f^{\circ}=-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
[Given : $\mathrm{M}^{+} \mathrm{X}^{-}$is a pure ionic compound and X forms a diatomic molecule $\mathrm{X}_2$ in gaseous state]
When 81.0 g of aluminium is allowed to react with 128.0 g of oxygen gas, the mass of aluminium oxide produced in grams is ________ . (Nearest integer)
Given :
Molar mass of Al is $27.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar mass of O is $16.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Consider the following sequence of reactions.
Total number of $\mathrm{sp}^3$ hybridised carbon atoms in the major product C formed is _________.
A compound ' $\mathrm{X}^{\prime}$ absorbs 2 moles of hydrogen and ' X ' upon oxidation with $\mathrm{KMnO}_4 \mid \mathrm{H}^{+}$ gives
The total number of $\sigma$ bonds present in the compound ' $X^{\prime}$ ' is __________.