If the area of the region $\left\{(x, y):-1 \leq x \leq 1,0 \leq y \leq \mathrm{a}+\mathrm{e}^{|x|} \mid-\mathrm{e}^{-x}, \mathrm{a}>0\right\}$ is $\frac{\mathrm{e}^2+8 \mathrm{e}+1}{\mathrm{e}}$, then the value of $a$ is :
Let the range of the function $f(x)=6+16 \cos x \cdot \cos \left(\frac{\pi}{3}-x\right) \cdot \cos \left(\frac{\pi}{3}+x\right) \cdot \sin 3 x \cdot \cos 6 x, x \in \mathbf{R}$ be $[\alpha, \beta]$. Then the distance of the point $(\alpha, \beta)$ from the line $3 x+4 y+12=0$ is :
The system of equations
$$\begin{aligned} & x+y+z=6, \\ & x+2 y+5 z=9, \\ & x+5 y+\lambda z=\mu, \end{aligned}$$
has no solution if
The distance of the line $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ from the point $(1,4,0)$ along the line $\frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$ is :