1
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{A}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x+y| \geqslant 3\}$ and $\mathrm{B}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x|+|y| \leq 3\}$. If $\mathrm{C}=\{(x, y) \in \mathrm{A} \cap \mathrm{B}: x=0$ or $y=0\}$, then $\sum_{(x, y) \in \mathrm{C}}|x+y|$ is :

A
18
B
24
C
15
D
12
2
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If in the expansion of $(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}$, the coefficients of $x$ and $x^2$ are 1 and -2 , respectively, then $\mathrm{p}^2+\mathrm{q}^2$ is equal to :

A
8
B
20
C
13
D
18
3
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A rod of length eight units moves such that its ends $A$ and $B$ always lie on the lines $x-y+2=0$ and $y+2=0$, respectively. If the locus of the point $P$, that divides the rod $A B$ internally in the ratio $2: 1$ is $9\left(x^2+\alpha y^2+\beta x y+\gamma x+28 y\right)-76=0$, then $\alpha-\beta-\gamma$ is equal to :

A
24
B
22
C
21
D
23
4
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\int x^3 \sin x \mathrm{~d} x=g(x)+C$, where $C$ is the constant of integration. If $8\left(g\left(\frac{\pi}{2}\right)+g^{\prime}\left(\frac{\pi}{2}\right)\right)=\alpha \pi^3+\beta \pi^2+\gamma, \alpha, \beta, \gamma \in Z$, then $\alpha+\beta-\gamma$ equals :

A
47
B
55
C
62
D
48
JEE Main Papers
2023
2021
EXAM MAP