Consider the following reactions
$$\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7 \xrightarrow[-\mathrm{H}_2 \mathrm{O}]{\mathrm{KOH}}[\mathrm{~A}] \xrightarrow[-\mathrm{H}_2 \mathrm{O}]{\mathrm{H}_2 \mathrm{SO}_4}[\mathrm{~B}]+\mathrm{K}_2 \mathrm{SO}_4$$
The products $[A]$ and $[B]$, respectively are :
Given below are two statements:
Consider the following reaction
Statement (I): In the case of formaldehyde is about 2280, due to small substituents, hydration is faster.
Statement (II) : In the case of trichloro acetaldehyde is about 2000 due to $-$I effect of $-$Cl .
In the light of the above statements, choose the correct answer from the options given below :
0.01 mole of an organic compound $(X)$ containing $10 \%$ hydrogen, on complete combustion produced $0.9 \mathrm{~g} \mathrm{H}_2 \mathrm{O}$. Molar mass of $(\mathrm{X})$ is _________ $\mathrm{g} \mathrm{~mol}^{-1}$.
The bond dissociation enthalpy of $\mathrm{X}_2 \Delta \mathrm{H}_{\text {bond }}^{\circ}$ calculated from the given data is ___________ $\mathrm{kJ} \mathrm{mol}^{-1}$. (Nearest integer)
$$\begin{aligned} & \mathrm{M}^{+} \mathrm{X}^{-}(\mathrm{s}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{X}^{-}(\mathrm{g}) \Delta \mathrm{H}_{\text {lattice }}^{\circ}=800 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \mathrm{M}(\mathrm{~s}) \rightarrow \mathrm{M}(\mathrm{~g}) \Delta \mathrm{H}_{\text {sub }}^{\circ}=100 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$$
$$\mathrm{M}(\mathrm{~g}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{e}^{-}(\mathrm{g}) \Delta \mathrm{H}_{\mathrm{i}}^{\circ}=500 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$\mathrm{X}(\mathrm{~g})+\mathrm{e}^{-}(\mathrm{g}) \rightarrow \mathrm{X}^{-}(\mathrm{g}) \Delta \mathrm{H}_{\mathrm{eg}}^{\circ}=-300 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$\mathrm{M}(\mathrm{~s})+\frac{1}{2} \mathrm{X}_2(\mathrm{~g}) \rightarrow \mathrm{M}^{+} \mathrm{X}^{-}(\mathrm{s}) \Delta \mathrm{H}_f^{\circ}=-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
[Given : $\mathrm{M}^{+} \mathrm{X}^{-}$is a pure ionic compound and X forms a diatomic molecule $\mathrm{X}_2$ in gaseous state]