Let the point A divide the line segment joining the points $\mathrm{P}(-1,-1,2)$ and $\mathrm{Q}(5,5,10)$ internally in the ratio $r: 1(r>0)$. If O is the origin and $(\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OA}})-\frac{1}{5}|\overrightarrow{\mathrm{OP}} \times \overrightarrow{\mathrm{OA}}|^2=10$, then the value of r is :
A board has 16 squares as shown in the figure :
Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is :
If the square of the shortest distance between the lines $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}$ is $\frac{m}{n}$, where $m$, $n$ are coprime numbers, then $m+n$ is equal to :
Let $\mathrm{X}=\mathbf{R} \times \mathbf{R}$. Define a relation R on X as :
$$\left(a_1, b_1\right) R\left(a_2, b_2\right) \Leftrightarrow b_1=b_2$$
Statement I: $\quad \mathrm{R}$ is an equivalence relation.
Statement II : For some $(\mathrm{a}, \mathrm{b}) \in \mathrm{X}$, the $\operatorname{set} \mathrm{S}=\{(x, y) \in \mathrm{X}:(x, y) \mathrm{R}(\mathrm{a}, \mathrm{b})\}$ represents a line parallel to $y=x$.
In the light of the above statements, choose the correct answer from the options given below :