Let $\alpha, \beta$ be the roots of the equation $x^2-\mathrm{ax}-\mathrm{b}=0$ with $\operatorname{Im}(\alpha)<\operatorname{Im}(\beta)$. Let $\mathrm{P}_{\mathrm{n}}=\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}$. If $\mathrm{P}_3=-5 \sqrt{7} i, \mathrm{P}_4=-3 \sqrt{7} i, \mathrm{P}_5=11 \sqrt{7} i$ and $\mathrm{P}_6=45 \sqrt{7} i$, then $\left|\alpha^4+\beta^4\right|$ is equal to __________.
The focus of the parabola $y^2=4 x+16$ is the centre of the circle $C$ of radius 5 . If the values of $\lambda$, for which C passes through the point of intersection of the lines $3 x-y=0$ and $x+\lambda y=4$, are $\lambda_1$ and $\lambda_2, \lambda_1<\lambda_2$, then $12 \lambda_1+29 \lambda_2$ is equal to ________ .
The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is ________.
The roots of the quadratic equation $3 x^2-p x+q=0$ are $10^{\text {th }}$ and $11^{\text {th }}$ terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first 11 terms of this arithmetic progression is 88 , then $q-2 p$ is equal to ________ .