The energy of a system is given as $\mathrm{E}(\mathrm{t})=\alpha^3 \mathrm{e}^{-b}$, where t is the time and $\beta=0.3 \mathrm{~s}^{-1}$. The errors in the measurement of $\alpha$ and $t$ are $1.2 \%$ and $1.6 \%$, respectively. At $t=5 \mathrm{~s}$, maximum percentage error in the energy is :
Match List - I with List - II
List - I | List - II | ||
---|---|---|---|
(A) | Permeability of free space | (I) | $\left[\mathrm{M} \mathrm{L}^2 \mathrm{~T}^{-2}\right]$ |
(B) | Magnetic field | (II) | $\left[\mathrm{M} \mathrm{T}^{-2} \mathrm{~A}^{-1}\right]$ |
(C) | Magnetic moment | (III) | $\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-2} \mathrm{~A}^{-2}\right]$ |
(D) | Torsional constant | (IV) | $\left[\mathrm{L}^2 \mathrm{~A}\right]$ |
Choose the correct answer from the options given below :
Using the given $P-V$ diagram, the work done by an ideal gas along the path $A B C D$ is :
A circular disk of radius R meter and mass M kg is rotating around the axis perpendicular to the disk. An external torque is applied to the disk such that $\theta(t)=5 t^2-8 t$, where $\theta(t)$ is the angular position of the rotating disc as a function of time $t$. How much power is delivered by the applied torque, when $t=2 \mathrm{~s}$ ?