1
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the set $$R=\{(a, b): a+5 b=42, a, b \in \mathbb{N}\}$$ has $$m$$ elements and $$\sum_\limits{n=1}^m\left(1-i^{n !}\right)=x+i y$$, where $$i=\sqrt{-1}$$, then the value of $$m+x+y$$ is

A
12
B
4
C
8
D
5
2
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the shortest distance between the lines

$$\begin{array}{ll} L_1: \vec{r}=(2+\lambda) \hat{i}+(1-3 \lambda) \hat{j}+(3+4 \lambda) \hat{k}, & \lambda \in \mathbb{R} \\ L_2: \vec{r}=2(1+\mu) \hat{i}+3(1+\mu) \hat{j}+(5+\mu) \hat{k}, & \mu \in \mathbb{R} \end{array}$$

is $$\frac{m}{\sqrt{n}}$$, where $$\operatorname{gcd}(m, n)=1$$, then the value of $$m+n$$ equals

A
384
B
387
C
390
D
377
3
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$I(x)=\int \frac{6}{\sin ^2 x(1-\cot x)^2} d x$$. If $$I(0)=3$$, then $$I\left(\frac{\pi}{12}\right)$$ is equal to

A
$$\sqrt3$$
B
$$2\sqrt3$$
C
$$6\sqrt3$$
D
$$3\sqrt3$$
4
JEE Main 2024 (Online) 8th April Morning Shift
Numerical
+4
-1
Change Language

If the orthocentre of the triangle formed by the lines $$2 x+3 y-1=0, x+2 y-1=0$$ and $$a x+b y-1=0$$, is the centroid of another triangle, whose circumcentre and orthocentre respectively are $$(3,4)$$ and $$(-6,-8)$$, then the value of $$|a-b|$$ is _________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12