Let $$I(x)=\int \frac{6}{\sin ^2 x(1-\cot x)^2} d x$$. If $$I(0)=3$$, then $$I\left(\frac{\pi}{12}\right)$$ is equal to
If the orthocentre of the triangle formed by the lines $$2 x+3 y-1=0, x+2 y-1=0$$ and $$a x+b y-1=0$$, is the centroid of another triangle, whose circumcentre and orthocentre respectively are $$(3,4)$$ and $$(-6,-8)$$, then the value of $$|a-b|$$ is _________.
If the range of $$f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$$ is $$[\alpha, \beta]$$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $$\frac{\alpha}{\beta}$$, is equal to __________.
Let $$\vec{a}=9 \hat{i}-13 \hat{j}+25 \hat{k}, \vec{b}=3 \hat{i}+7 \hat{j}-13 \hat{k}$$ and $$\vec{c}=17 \hat{i}-2 \hat{j}+\hat{k}$$ be three given vectors. If $$\vec{r}$$ is a vector such that $$\vec{r} \times \vec{a}=(\vec{b}+\vec{c}) \times \vec{a}$$ and $$\vec{r} \cdot(\vec{b}-\vec{c})=0$$, then $$\frac{|593 \vec{r}+67 \vec{a}|^2}{(593)^2}$$ is equal to __________.