If the shortest distance between the lines
$$\begin{array}{ll} L_1: \vec{r}=(2+\lambda) \hat{i}+(1-3 \lambda) \hat{j}+(3+4 \lambda) \hat{k}, & \lambda \in \mathbb{R} \\ L_2: \vec{r}=2(1+\mu) \hat{i}+3(1+\mu) \hat{j}+(5+\mu) \hat{k}, & \mu \in \mathbb{R} \end{array}$$
is $$\frac{m}{\sqrt{n}}$$, where $$\operatorname{gcd}(m, n)=1$$, then the value of $$m+n$$ equals
Let $$I(x)=\int \frac{6}{\sin ^2 x(1-\cot x)^2} d x$$. If $$I(0)=3$$, then $$I\left(\frac{\pi}{12}\right)$$ is equal to
If the orthocentre of the triangle formed by the lines $$2 x+3 y-1=0, x+2 y-1=0$$ and $$a x+b y-1=0$$, is the centroid of another triangle, whose circumcentre and orthocentre respectively are $$(3,4)$$ and $$(-6,-8)$$, then the value of $$|a-b|$$ is _________.
If the range of $$f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$$ is $$[\alpha, \beta]$$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $$\frac{\alpha}{\beta}$$, is equal to __________.