Number of Complexes with even number of electrons in $$\mathrm{t_{2 g}}$$ orbitals is -
$$\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Co}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Co}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{3+},\left[\mathrm{Cu}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+}$$
For the given hypothetical reactions, the equilibrium constants are as follows :
$$\begin{aligned} & \mathrm{X} \rightleftharpoons \mathrm{Y} ; \mathrm{K}_1=1.0 \\ & \mathrm{Y} \rightleftharpoons \mathrm{Z} ; \mathrm{K}_2=2.0 \\ & \mathrm{Z} \rightleftharpoons \mathrm{W} ; \mathrm{K}_3=4.0 \end{aligned}$$
The equilibrium constant for the reaction $$\mathrm{X} \rightleftharpoons \mathrm{W}$$ is
An octahedral complex with the formula $$\mathrm{CoCl}_3 \cdot \mathrm{nNH}_3$$ upon reaction with excess of $$\mathrm{AgNO}_3$$ solution gives 2 moles of $$\mathrm{AgCl}$$. Consider the oxidation state of $$\mathrm{Co}$$ in the complex is '$$x$$'. The value of "$$x+n$$" is __________.
In the given compound, the number of 2$$^\circ$$ carbon atom/s is ________.