A liquid column of height $$0.04 \mathrm{~cm}$$ balances excess pressure of a soap bubble of certain radius. If density of liquid is $$8 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}$$ and surface tension of soap solution is $$0.28 \mathrm{~Nm}^{-1}$$, then diameter of the soap bubble is __________ $$\mathrm{cm}$$. (if $$\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}$$ )
A uniform thin metal plate of mass $$10 \mathrm{~kg}$$ with dimensions is shown. The ratio of $$\mathrm{x}$$ and y coordinates of center of mass of plate in $$\frac{n}{9}$$. The value of $$n$$ is ________.
Resistance of a wire at $$0^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$$ and $$t^{\circ} \mathrm{C}$$ is found to be $$10 \Omega, 10.2 \Omega$$ and $$10.95 \Omega$$ respectively. The temperature $$t$$ in Kelvin scale is _________.
A parallel beam of monochromatic light of wavelength $$600 \mathrm{~nm}$$ passes through single slit of $$0.4 \mathrm{~mm}$$ width. Angular divergence corresponding to second order minima would be _________ $$\times 10^{-3} \mathrm{~rad}$$.