Let $$H: \frac{-x^2}{a^2}+\frac{y^2}{b^2}=1$$ be the hyperbola, whose eccentricity is $$\sqrt{3}$$ and the length of the latus rectum is $$4 \sqrt{3}$$. Suppose the point $$(\alpha, 6), \alpha>0$$ lies on $$H$$. If $$\beta$$ is the product of the focal distances of the point $$(\alpha, 6)$$, then $$\alpha^2+\beta$$ is equal to
The number of critical points of the function $$f(x)=(x-2)^{2 / 3}(2 x+1)$$ is
Let $$y=y(x)$$ be the solution of the differential equation $$(1+y^2) e^{\tan x} d x+\cos ^2 x(1+e^{2 \tan x}) d y=0, y(0)=1$$. Then $$y\left(\frac{\pi}{4}\right)$$ is equal to
Let the sum of two positive integers be 24 . If the probability, that their product is not less than $$\frac{3}{4}$$ times their greatest possible product, is $$\frac{m}{n}$$, where $$\operatorname{gcd}(m, n)=1$$, then $$n$$-$$m$$ equals