1
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$P(x, y, z)$$ be a point in the first octant, whose projection in the $$x y$$-plane is the point $$Q$$. Let $$O P=\gamma$$; the angle between $$O Q$$ and the positive $$x$$-axis be $$\theta$$; and the angle between $$O P$$ and the positive $$z$$-axis be $$\phi$$, where $$O$$ is the origin. Then the distance of $$P$$ from the $$x$$-axis is

A
$$\gamma \sqrt{1-\sin ^2 \phi \cos ^2 \theta}$$
B
$$\gamma \sqrt{1+\cos ^2 \theta \sin ^2 \phi}$$
C
$$\gamma \sqrt{1+\cos ^2 \phi \sin ^2 \theta}$$
D
$$\gamma \sqrt{1-\sin ^2 \theta \cos ^2 \phi}$$
2
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$z$$ be a complex number such that $$|z+2|=1$$ and $$\operatorname{lm}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$$. Then the value of $$|\operatorname{Re}(\overline{z+2})|$$ is

A
$$\frac{2 \sqrt{6}}{5}$$
B
$$\frac{24}{5}$$
C
$$\frac{\sqrt{6}}{5}$$
D
$$\frac{1+\sqrt{6}}{5}$$
3
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of all the solutions of the equation $$(8)^{2 x}-16 \cdot(8)^x+48=0$$ is :

A
$$1+\log _8(6)$$
B
$$1+\log _6(8)$$
C
$$\log _8(6)$$
D
$$\log _8(4)$$
4
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The equations of two sides $$\mathrm{AB}$$ and $$\mathrm{AC}$$ of a triangle $$\mathrm{ABC}$$ are $$4 x+y=14$$ and $$3 x-2 y=5$$, respectively. The point $$\left(2,-\frac{4}{3}\right)$$ divides the third side $$\mathrm{BC}$$ internally in the ratio $$2: 1$$, the equation of the side $$\mathrm{BC}$$ is

A
$$x+6 y+6=0$$
B
$$x-3 y-6=0$$
C
$$x+3 y+2=0$$
D
$$x-6 y-10=0$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12