The electrostatic force $$\left(\vec{F_1}\right)$$ and magnetic force $$\left(\vec{F}_2\right)$$ acting on a charge $$q$$ moving with velocity $$v$$ can be written :
If $$\mathrm{n}$$ is the number density and $$\mathrm{d}$$ is the diameter of the molecule, then the average distance covered by a molecule between two successive collisions (i.e. mean free path) is represented by :
The electric field at point $$\mathrm{p}$$ due to an electric dipole is $$\mathrm{E}$$. The electric field at point $$\mathrm{R}$$ on equitorial line will be $$\frac{\mathrm{E}}{x}$$. The value of $$x$$ :
A sonometer wire of resonating length $$90 \mathrm{~cm}$$ has a fundamental frequency of $$400 \mathrm{~Hz}$$ when kept under some tension. The resonating length of the wire with fundamental frequency of $$600 \mathrm{~Hz}$$ under same tension _______ $$\mathrm{cm}$$.