1
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The values of $$m, n$$, for which the system of equations

$$\begin{aligned} & x+y+z=4, \\ & 2 x+5 y+5 z=17, \\ & x+2 y+\mathrm{m} z=\mathrm{n} \end{aligned}$$

has infinitely many solutions, satisfy the equation :

A
$$\mathrm{m}^2+\mathrm{n}^2-\mathrm{m}-\mathrm{n}=46$$
B
$$\mathrm{m}^2+\mathrm{n}^2+\mathrm{mn}=68$$
C
$$\mathrm{m}^2+\mathrm{n}^2-\mathrm{mn}=39$$
D
$$\mathrm{m}^2+\mathrm{n}^2+\mathrm{m}+\mathrm{n}=64$$
2
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$$, then at $$\theta=\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+y$$ is equal to :

A
$$\frac{1}{2}$$
B
1
C
$$\frac{3}{2}$$
D
2
3
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\beta(\mathrm{m}, \mathrm{n})=\int_\limits0^1 x^{\mathrm{m}-1}(1-x)^{\mathrm{n}-1} \mathrm{~d} x, \mathrm{~m}, \mathrm{n}>0$$. If $$\int_\limits0^1\left(1-x^{10}\right)^{20} \mathrm{~d} x=\mathrm{a} \times \beta(\mathrm{b}, \mathrm{c})$$, then $$100(\mathrm{a}+\mathrm{b}+\mathrm{c})$$ equals _________.

A
2012
B
1021
C
1120
D
2120
4
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let ,$$f:[-1,2] \rightarrow \mathbf{R}$$ be given by $$f(x)=2 x^2+x+\left[x^2\right]-[x]$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. The number of points, where $$f$$ is not continuous, is :

A
5
B
6
C
4
D
3
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12