Let $$\beta(\mathrm{m}, \mathrm{n})=\int_\limits0^1 x^{\mathrm{m}-1}(1-x)^{\mathrm{n}-1} \mathrm{~d} x, \mathrm{~m}, \mathrm{n}>0$$. If $$\int_\limits0^1\left(1-x^{10}\right)^{20} \mathrm{~d} x=\mathrm{a} \times \beta(\mathrm{b}, \mathrm{c})$$, then $$100(\mathrm{a}+\mathrm{b}+\mathrm{c})$$ equals _________.
Let ,$$f:[-1,2] \rightarrow \mathbf{R}$$ be given by $$f(x)=2 x^2+x+\left[x^2\right]-[x]$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. The number of points, where $$f$$ is not continuous, is :
Let the set $$S=\{2,4,8,16, \ldots, 512\}$$ be partitioned into 3 sets $$A, B, C$$ with equal number of elements such that $$\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}=\mathrm{S}$$ and $$\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{C}=\mathrm{A} \cap \mathrm{C}=\phi$$. The maximum number of such possible partitions of $$S$$ is equal to:
The coefficients $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ in the quadratic equation $$\mathrm{a} x^2+\mathrm{bx}+\mathrm{c}=0$$ are from the set $$\{1,2,3,4,5,6\}$$. If the probability of this equation having one real root bigger than the other is p, then 216p equals :