Consider three vectors $$\vec{a}, \vec{b}, \vec{c}$$. Let $$|\vec{a}|=2,|\vec{b}|=3$$ and $$\vec{a}=\vec{b} \times \vec{c}$$. If $$\alpha \in\left[0, \frac{\pi}{3}\right]$$ is the angle between the vectors $$\vec{b}$$ and $$\vec{c}$$, then the minimum value of $$27|\vec{c}-\vec{a}|^2$$ is equal to:
The differential equation of the family of circles passing through the origin and having centre at the line $$y=x$$ is :
Let $$y=y(x)$$ be the solution of the differential equation
$$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x}{\left(1+x^2\right)^2} y=x \mathrm{e}^{\frac{1}{\left(1+x^2\right)}} ; y(0)=0.$$
Then the area enclosed by the curve $$f(x)=y(x) \mathrm{e}^{-\frac{1}{\left(1+x^2\right)}}$$ and the line $$y-x=4$$ is ________.
Let the mean and the standard deviation of the probability distribution
$$\mathrm{X}$$ | $$\alpha$$ | 1 | 0 | $$-$$3 |
---|---|---|---|---|
$$\mathrm{P(X)}$$ | $$\frac{1}{3}$$ | $$\mathrm{K}$$ | $$\frac{1}{6}$$ | $$\frac{1}{4}$$ |
be $$\mu$$ and $$\sigma$$, respectively. If $$\sigma-\mu=2$$, then $$\sigma+\mu$$ is equal to ________.