1
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider three vectors $$\vec{a}, \vec{b}, \vec{c}$$. Let $$|\vec{a}|=2,|\vec{b}|=3$$ and $$\vec{a}=\vec{b} \times \vec{c}$$. If $$\alpha \in\left[0, \frac{\pi}{3}\right]$$ is the angle between the vectors $$\vec{b}$$ and $$\vec{c}$$, then the minimum value of $$27|\vec{c}-\vec{a}|^2$$ is equal to:

A
124
B
110
C
121
D
105
2
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The differential equation of the family of circles passing through the origin and having centre at the line $$y=x$$ is :

A
$$\left(x^2-y^2+2 x y\right) \mathrm{d} x=\left(x^2-y^2+2 x y\right) \mathrm{d} y$$
B
$$\left(x^2+y^2-2 x y\right) \mathrm{d} x=\left(x^2+y^2+2 x y\right) \mathrm{d} y$$
C
$$\left(x^2+y^2+2 x y\right) \mathrm{d} x=\left(x^2+y^2-2 x y\right) \mathrm{d} y$$
D
$$\left(x^2-y^2+2 x y\right) \mathrm{d} x=\left(x^2-y^2-2 x y\right) \mathrm{d} y$$
3
JEE Main 2024 (Online) 5th April Evening Shift
Numerical
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation

$$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x}{\left(1+x^2\right)^2} y=x \mathrm{e}^{\frac{1}{\left(1+x^2\right)}} ; y(0)=0.$$

Then the area enclosed by the curve $$f(x)=y(x) \mathrm{e}^{-\frac{1}{\left(1+x^2\right)}}$$ and the line $$y-x=4$$ is ________.

Your input ____
4
JEE Main 2024 (Online) 5th April Evening Shift
Numerical
+4
-1
Change Language

Let the mean and the standard deviation of the probability distribution

$$\mathrm{X}$$ $$\alpha$$ 1 0 $$-$$3
$$\mathrm{P(X)}$$ $$\frac{1}{3}$$ $$\mathrm{K}$$ $$\frac{1}{6}$$ $$\frac{1}{4}$$

be $$\mu$$ and $$\sigma$$, respectively. If $$\sigma-\mu=2$$, then $$\sigma+\mu$$ is equal to ________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12