Let the mean and the standard deviation of the probability distribution
$$\mathrm{X}$$ | $$\alpha$$ | 1 | 0 | $$-$$3 |
---|---|---|---|---|
$$\mathrm{P(X)}$$ | $$\frac{1}{3}$$ | $$\mathrm{K}$$ | $$\frac{1}{6}$$ | $$\frac{1}{4}$$ |
be $$\mu$$ and $$\sigma$$, respectively. If $$\sigma-\mu=2$$, then $$\sigma+\mu$$ is equal to ________.
Let the maximum and minimum values of $$\left(\sqrt{8 x-x^2-12}-4\right)^2+(x-7)^2, x \in \mathbf{R}$$ be $$\mathrm{M}$$ and $$\mathrm{m}$$, respectively. Then $$\mathrm{M}^2-\mathrm{m}^2$$ is equal to _________.
Let the point $$(-1, \alpha, \beta)$$ lie on the line of the shortest distance between the lines $$\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2}$$ and $$\frac{x+2}{-1}=\frac{y+6}{2}=\frac{z-1}{0}$$. Then $$(\alpha-\beta)^2$$ is equal to _________.
If $$1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\frac{49-20 \sqrt{6}}{180}+\ldots$$ upto $$\infty=2+\left(\sqrt{\frac{b}{a}}+1\right) \log _e\left(\frac{a}{b}\right)$$, where a and b are integers with $$\operatorname{gcd}(a, b)=1$$, then $$\mathrm{11 a+18 b}$$ is equal to __________.