Let ,$$f:[-1,2] \rightarrow \mathbf{R}$$ be given by $$f(x)=2 x^2+x+\left[x^2\right]-[x]$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. The number of points, where $$f$$ is not continuous, is :
Let the set $$S=\{2,4,8,16, \ldots, 512\}$$ be partitioned into 3 sets $$A, B, C$$ with equal number of elements such that $$\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}=\mathrm{S}$$ and $$\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{C}=\mathrm{A} \cap \mathrm{C}=\phi$$. The maximum number of such possible partitions of $$S$$ is equal to:
The coefficients $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ in the quadratic equation $$\mathrm{a} x^2+\mathrm{bx}+\mathrm{c}=0$$ are from the set $$\{1,2,3,4,5,6\}$$. If the probability of this equation having one real root bigger than the other is p, then 216p equals :
Let $$\alpha \beta \neq 0$$ and $$A=\left[\begin{array}{rrr}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$$. If $$B=\left[\begin{array}{rrr}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$$ is the matrix of cofactors of the elements of $$A$$, then $$\operatorname{det}(A B)$$ is equal to :