A car is moving with speed of $$150 \mathrm{~km} / \mathrm{h}$$ and after applying the break it will move $$27 \mathrm{~m}$$ before it stops. If the same car is moving with a speed of one third the reported speed then it will stop after travelling ___________ m distance.
Four forces are acting at a point $$\mathrm{P}$$ in equilibrium as shown in figure. The ratio of force $$\mathrm{F}_{1}$$ to $$\mathrm{F}_{2}$$ is $$1: x$$ where $$x=$$ _____________.
A wire of length $$\mathrm{L}$$ and radius $$\mathrm{r}$$ is clamped rigidly at one end. When the other end of the wire is pulled by a force $$\mathrm{F}$$, its length increases by $$5 \mathrm{~cm}$$. Another wire of the same material of length $$4 \mathrm{L}$$ and radius $$4 \mathrm{r}$$ is pulled by a force $$4 \mathrm{F}$$ under same conditions. The increase in length of this wire is __________________ $$\mathrm{cm}$$.
A unit scale is to be prepared whose length does not change with temperature and remains $$20 \mathrm{~cm}$$, using a bimetallic strip made of brass and iron each of different length. The length of both components would change in such a way that difference between their lengths remains constant. If length of brass is $$40 \mathrm{~cm}$$ and length of iron will be __________ $$\mathrm{cm}$$. $$\left(\alpha_{\text {iron }}=1.2 \times 10^{-5} \mathrm{~K}^{-1}\right.$$ and $$\left.\alpha_{\text {brass }}=1.8 \times 10^{-5} \mathrm{~K}^{-1}\right)$$.