A person moved from A to B on a circular path as shown in figure. If the distance travelled by him is $$60 \mathrm{~m}$$, then the magnitude of displacement would be :
(Given $$\left.\cos 135^{\circ}=-0.7\right)$$
A body of mass $$0.5 \mathrm{~kg}$$ travels on straight line path with velocity $$v=\left(3 x^{2}+4\right) \mathrm{m} / \mathrm{s}$$. The net workdone by the force during its displacement from $$x=0$$ to $$x=2 \mathrm{~m}$$ is :
A solid cylinder and a solid sphere, having same mass $$M$$ and radius $$R$$, roll down the same inclined plane from top without slipping. They start from rest. The ratio of velocity of the solid cylinder to that of the solid sphere, with which they reach the ground, will be :
Three identical particles $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$ of mass $$100 \mathrm{~kg}$$ each are placed in a straight line with $$\mathrm{AB}=\mathrm{BC}=13 \mathrm{~m}$$. The gravitational force on a fourth particle $$\mathrm{P}$$ of the same mass is $$\mathrm{F}$$, when placed at a distance $$13 \mathrm{~m}$$ from the particle $$\mathrm{B}$$ on the perpendicular bisector of the line $$\mathrm{AC}$$. The value of $$\mathrm{F}$$ will be approximately :