Following statements are given :
(A) The average kinetic energy of a gas molecule decreases when the temperature is reduced.
(B) The average kinetic energy of a gas molecule increases with increase in pressure at constant temperature.
(C) The average kinetic energy of a gas molecule decreases with increase in volume.
(D) Pressure of a gas increases with increase in temperature at constant pressure.
(E) The volume of gas decreases with increase in temperature.
Choose the correct answer from the options given below :
In figure $$(\mathrm{A})$$, mass '$$2 \mathrm{~m}^{\text {' }}$$ is fixed on mass '$$\mathrm{m}$$ ' which is attached to two springs of spring constant $$\mathrm{k}$$. In figure (B), mass '$$\mathrm{m}$$' is attached to two springs of spring constant '$$\mathrm{k}$$' and '$$2 \mathrm{k}^{\prime}$$. If mass '$$\mathrm{m}$$' in (A) and in (B) are displaced by distance '$$x^{\prime}$$ horizontally and then released, then time period $$\mathrm{T}_{1}$$ and $$\mathrm{T}_{2}$$ corresponding to $$(\mathrm{A})$$ and (B) respectively follow the relation.
A condenser of $$2 \,\mu \mathrm{F}$$ capacitance is charged steadily from 0 to $$5 \,\mathrm{C}$$. Which of the following graph represents correctly the variation of potential difference $$(\mathrm{V})$$ across it's plates with respect to the charge $$(Q)$$ on the condenser?
Two charged particles, having same kinetic energy, are allowed to pass through a uniform magnetic field perpendicular to the direction of motion. If the ratio of radii of their circular paths is $$6: 5$$ and their respective masses ratio is $$9: 4$$. Then, the ratio of their charges will be :