1
JEE Main 2022 (Online) 25th July Morning Shift
Numerical
+4
-1
Change Language

If the maximum value of the term independent of $$t$$ in the expansion of $$\left(\mathrm{t}^{2} x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{\mathrm{t}}\right)^{15}, x \geqslant 0$$, is $$\mathrm{K}$$, then $$8 \mathrm{~K}$$ is equal to ____________.

Your input ____
2
JEE Main 2022 (Online) 25th July Morning Shift
Numerical
+4
-1
Change Language

Let $$a, b$$ be two non-zero real numbers. If $$p$$ and $$r$$ are the roots of the equation $$x^{2}-8 \mathrm{a} x+2 \mathrm{a}=0$$ and $$\mathrm{q}$$ and s are the roots of the equation $$x^{2}+12 \mathrm{~b} x+6 \mathrm{~b}=0$$, such that $$\frac{1}{\mathrm{p}}, \frac{1}{\mathrm{q}}, \frac{1}{\mathrm{r}}, \frac{1}{\mathrm{~s}}$$ are in A.P., then $$\mathrm{a}^{-1}-\mathrm{b}^{-1}$$ is equal to _____________.

Your input ____
3
JEE Main 2022 (Online) 25th July Morning Shift
Numerical
+4
-1
Change Language

Let $$f(x)=\left\{\begin{array}{l}\left|4 x^{2}-8 x+5\right|, \text { if } 8 x^{2}-6 x+1 \geqslant 0 \\ {\left[4 x^{2}-8 x+5\right], \text { if } 8 x^{2}-6 x+1<0,}\end{array}\right.$$ where $$[\alpha]$$ denotes the greatest integer less than or equal to $$\alpha$$. Then the number of points in $$\mathbf{R}$$ where $$f$$ is not differentiable is ___________.

Your input ____
4
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If momentum [P], area $$[\mathrm{A}]$$ and time $$[\mathrm{T}]$$ are taken as fundamental quantities, then the dimensional formula for coefficient of viscosity is :

A
$$\left[\mathrm{P} \,\mathrm{A}^{-1} \mathrm{~T}^{0}\right]$$
B
$$\left[\mathrm{P} \,\mathrm{A}\mathrm{~T}^{-1}\right]$$
C
$$\left[\mathrm{P}\,\mathrm{A}^{-1} \mathrm{~T}\right]$$
D
$$\left[\mathrm{P} \,\mathrm{A}^{-1} \mathrm{~T}^{-1}\right]$$
JEE Main Papers
2023
2021
EXAM MAP