1
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The general solution of the differential equation $$\left(x-y^{2}\right) \mathrm{d} x+y\left(5 x+y^{2}\right) \mathrm{d} y=0$$ is :

A
$$\left(y^{2}+x\right)^{4}=\mathrm{C}\left|\left(y^{2}+2 x\right)^{3}\right|$$
B
$$\left(y^{2}+2 x\right)^{4}=C\left|\left(y^{2}+x\right)^{3}\right|$$
C
$$\left|\left(y^{2}+x\right)^{3}\right|=\mathrm{C}\left(2 y^{2}+x\right)^{4}$$
D
$$\left|\left(y^{2}+2 x\right)^{3}\right|=C\left(2 y^{2}+x\right)^{4}$$
2
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A line, with the slope greater than one, passes through the point $$A(4,3)$$ and intersects the line $$x-y-2=0$$ at the point B. If the length of the line segment $$A B$$ is $$\frac{\sqrt{29}}{3}$$, then $$B$$ also lies on the line :

A
$$2 x+y=9$$
B
$$3 x-2 y=7$$
C
$$ x+2 y=6$$
D
$$2 x-3 y=3$$
3
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the locus of the centre $$(\alpha, \beta), \beta>0$$, of the circle which touches the circle $$x^{2}+(y-1)^{2}=1$$ externally and also touches the $$x$$-axis be $$\mathrm{L}$$. Then the area bounded by $$\mathrm{L}$$ and the line $$y=4$$ is:

A
$$ \frac{32 \sqrt{2}}{3} $$
B
$$ \frac{40 \sqrt{2}}{3} $$
C
$$\frac{64}{3}$$
D
$$ \frac{32}{3} $$
4
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{ABC}$$ be a triangle such that $$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{c}},|\overrightarrow{\mathrm{a}}|=6 \sqrt{2},|\overrightarrow{\mathrm{b}}|=2 \sqrt{3}$$ and $$\vec{b} \cdot \vec{c}=12$$. Consider the statements :

$$(\mathrm{S} 1):|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}})|-|\vec{c}|=6(2 \sqrt{2}-1)$$

$$(\mathrm{S} 2): \angle \mathrm{ACB}=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)$$

Then

A
both (S1) and (S2) are true
B
only (S1) is true
C
only (S2) is true
D
both (S1) and (S2) are false
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12