The general solution of the differential equation $$\left(x-y^{2}\right) \mathrm{d} x+y\left(5 x+y^{2}\right) \mathrm{d} y=0$$ is :
A line, with the slope greater than one, passes through the point $$A(4,3)$$ and intersects the line $$x-y-2=0$$ at the point B. If the length of the line segment $$A B$$ is $$\frac{\sqrt{29}}{3}$$, then $$B$$ also lies on the line :
Let the locus of the centre $$(\alpha, \beta), \beta>0$$, of the circle which touches the circle $$x^{2}+(y-1)^{2}=1$$ externally and also touches the $$x$$-axis be $$\mathrm{L}$$. Then the area bounded by $$\mathrm{L}$$ and the line $$y=4$$ is:
Let $$\mathrm{ABC}$$ be a triangle such that $$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{c}},|\overrightarrow{\mathrm{a}}|=6 \sqrt{2},|\overrightarrow{\mathrm{b}}|=2 \sqrt{3}$$ and $$\vec{b} \cdot \vec{c}=12$$. Consider the statements :
$$(\mathrm{S} 1):|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}})|-|\vec{c}|=6(2 \sqrt{2}-1)$$
$$(\mathrm{S} 2): \angle \mathrm{ACB}=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)$$
Then