If the numbers appeared on the two throws of a fair six faced die are $$\alpha$$ and $$\beta$$, then the probability that $$x^{2}+\alpha x+\beta>0$$, for all $$x \in \mathbf{R}$$, is :
Let $$A=\left(\begin{array}{rrr}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right)$$ and $$B=A-I$$. If $$\omega=\frac{\sqrt{3} i-1}{2}$$, then the number of elements in the $$\operatorname{set}\left\{n \in\{1,2, \ldots, 100\}: A^{n}+(\omega B)^{n}=A+B\right\}$$ is equal to ____________.
The letters of the word 'MANKIND' are written in all possible orders and arranged in serial order as in an English dictionary. Then the serial number of the word 'MANKIND' is _____________.
If the maximum value of the term independent of $$t$$ in the expansion of $$\left(\mathrm{t}^{2} x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{\mathrm{t}}\right)^{15}, x \geqslant 0$$, is $$\mathrm{K}$$, then $$8 \mathrm{~K}$$ is equal to ____________.