The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is __________.
Let $$S=\{4,6,9\}$$ and $$T=\{9,10,11, \ldots, 1000\}$$. If $$A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in \mathbf{N}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right.$$ $$\epsilon S\}$$, then the sum of all the elements in the set $$T-A$$ is equal to __________.
Let $$A=\{1,2,3,4,5,6,7\}$$ and $$B=\{3,6,7,9\}$$. Then the number of elements in the set $$\{C \subseteq A: C \cap B \neq \phi\}$$ is ___________.
Let $$A=\{1,2,3,4,5,6,7\}$$. Define $$B=\{T \subseteq A$$ : either $$1 \notin T$$ or $$2 \in T\}$$ and $$C=\{T \subseteq A: T$$ the sum of all the elements of $$T$$ is a prime number $$\}$$. Then the number of elements in the set $$B \cup C$$ is ________________.