Let $$\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$$ and $$\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$$ or $$\left.b^{2}=a+1\right\}$$ be a relation on $$\mathrm{A}$$. Then the minimum number of elements, that must be added to the relation $$\mathrm{R}$$ so that it becomes reflexive and symmetric, is __________
The number of relations, on the set $$\{1,2,3\}$$ containing $$(1,2)$$ and $$(2,3)$$, which are reflexive and transitive but not symmetric, is __________.
The number of elements in the set $$\{ n \in Z:|{n^2} - 10n + 19| < 6\} $$ is _________.
Let $$A=\{0,3,4,6,7,8,9,10\}$$ and $$R$$ be the relation defined on $$A$$ such that $$R=\{(x, y) \in A \times A: x-y$$ is odd positive integer or $$x-y=2\}$$. The minimum number of elements that must be added to the relation $$R$$, so that it is a symmetric relation, is equal to ____________.